
The Rational Method 
Introduction 

The Rational Method at age 150 remains yet the most-employed formula of engineering 
hydrology. The Rational Method is logical, generalized and often reasonable. Yet its theoretical 
basis is significantly violated in most of its applications. This course explores the practical realm 
of hydrologic analysis, bounded by multitudes of complex natural interactions on one hand and 
the stark non-negotiable simplicity of physical law on the other. The Rational Method is both art 
and science. 

The Rational Method is presented from the perspective of each of the Rational Method's three 
“independent” variables. You will quickly discern that these variables intertwine. To understand 
one, you must understand the others. 

History 

More than a tale about a formula, the genesis of the Rational Method is part of the larger ascent 
of the scientific perspective. 

Not until Pierre Parrault (a French attorney prone to embezzlement) published “De l’origine des 
fontaines” in 1674 was it quantitatively established that stream flow derives from precipitation in 
the contributing watershed. Parrault’s observation rectified 2000 years of Greek-inspired 
philosophical confusion regarding a hydrologic cycle in which rivers are ocean-fed from 
subterranean seas or earth-respired vapors. Parrault showed hydrology to be a quantifiable, 
physics-based discipline. 

It took another 170 years for investigators, primarily in the British Isles, to conclude that the ratio 
of runoff to rainfall, at least for a particular watershed, might be approximated as a coefficient, 
typically in the 0.4-0.6 range for natural catchments. Such a coefficient is the first principle of what 
would become known as the Rational Method. 

In 1851, Thomas Mulvaney presented the Rational Method’s second principle, the role of the 
runoff’s time of concentration in quantifying the storm event, to the Irish Institution of Civil 
Engineers. Mulvaney proposed that, 

1 Eq.    contave ACiQ =  

where Q (in Imperial units) is watershed runoff rate in cubic feet per second (cfs), C is a 
dimensionless runoff-to-rainfall coefficient between 0.00 and 1.00, i-ave is rainfall intensity in 
inches/hour averaged over the time of concentration and A-cont is contributing watershed area in 
acres. (Because the verbiage of this course may find itself reduced to text-only formatting, 
subscripts will be designated with a dash.) Further definition of the three right-hand-side variables 
is the bulk of this course. 

Mulvaney’s clock-driven recording rain gage, an instrument required to calibrate the Rational 
Method, moved the development from theory to practice. The method is also known as the 
Kuichling formula in the United States in honor of Emil Kuichling who applied it for sewer design 
in Rochester, NY, 1877-1888. The method is known as the Lloyd-Davies formula in the United 
Kingdom in honor of D.E. Lloyd-Davies who wrote about it in 1906. 

The obviousness of the hydrologic cycle today attests to the obliviousness to measurement only 
several-hundred years ago. The Rational Method was one step in the transformation. 
Unfortunately, as the body of this course details, because that step could mathematically achieve 
reasonable results (given the often-poor limits of verification), that step has too often been the 
only one taken. Most engineering techniques are revised, if not revolutionized, every few 
generations. Mulvaney's work persists. 

The Rational Method has been heavily employed for a century in much of the developed world’s 
urban construction. The method's basis, however, has no more verification than that of one small 
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parking lot study by Johns Hopkins University (ASCE, 1996, p. 582). Mulvaney’s work persists 
because of its ease, not its confirmation. 

Why the Method is “Rational” 

The Rational Method is misdesignated “rational” by those who attribute the title to fundamental 
physical reason. As will be discussed, the method’s logic is highly idealized. FHWA (1986, p. 137) 
classifies the method as empirical. The rational mind should at least suspect that Eq. 1 is 
analytically superficial. To its “rational” credit, the method, in its infancy, was less arbitrary than its 
competitors. 

Eq. 1 is unsystematically dimensional, employing feet, seconds, inches, hours and acres. If one 
takes each right-hand-side variable as 1.0, runoff is 1.0 acre-inch/hour, which converts to 1.00833 
cfs, 1 cfs in any practical sense. Some authors thus attribute the title “rational” to the closeness of 
1.00833 to unity. If that were the basis, the equation might more appropriately be known as the 
“Coincidental Imperial Units Method”, as Eq. 1 can, of course, be formulated for any dimensional 
system by an appropriate constant. In SI form, Eq. 1 becomes, 

2 Eq.    00278.0 contave ACiQ =  

where Q is in cubic meters per second, i-ave is in millimeters/hour and A-cont is in hectares. The 
0.00278 obviously isn’t close to unity. This course will use Imperial units, Eq. 1. 

The Rational Method is “rational” by virtue of its reliance on a ratio C of runoff to rainfall intensity. 
The method title would be less ambiguous if “nal” were deleted. 

The United States Army knows the wisdom of strategic retreat. USACE, (1996, p. 110) ducks the 
etymologic (word history) question entirely, calling the computation “the so-called rational 
method”. If the professional community cannot agree on why something is named, it should come 
as no surprise when the community doesn’t agree on its employment. 

C as a Scientific Parameter 

As will be immediately evident, a C is by no means a constant in the manner of pi, an immutable 
value. C is a variable. The dilemma manifests itself in most applications of the Rational Method. A 
reference may indicate that C for, say, heavy industrial zones lies between 0.60 and 0.90 or 
perhaps is typically 0.80. What contributes to the variability? Can such contributions be 
separated? 

In a mechanical sense, C is the product of two coefficients, Eq. 3, 

3 Eq.     da CCC =  

C-a is due to abstractions (infiltration, interception, detention storage, etc.) and C-d is related to 
diffusion, the tendency for a hydrograph to spread in time and attenuate in peak as it moves 
downstream. Hydraulic engineers see C-d as a “routing” issue. Both C-a and C-d are 
dimensionless. Neither can exceed unity. From the practical viewpoint, as we will see in Section 
9, C-d is treated as if it were 1.00 and C-a can be seen as, 

4 Eq.       
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where i-ave is rainfall intensity measured in inches/hour and phi is an index of loss rate in similar 
units. The hydrologic “phi index” can be used to horizontally divide a hyetograph into direct runoff 
above and abstraction below. If no loss occurs, phi is 0.0 and C is 1.00. If loss is at the same rate 
as rainfall, C is 0.00. Loss rate can’t exceed rainfall rate because of mass conservation. From the 
perspective of science, however, Eq. 4 leads nowhere because phi is a one-event empirical 
backcalculated watershed parameter. 

Alternatively, where a watershed’s flow path is complex, the C can be seen as an expression of 
two empirical components, one C relating to overland flow and another C relating to channel flow 
Singh (1988, p. 127) provides some guidance, but not enough for scientific application. 



Chadwick and Morfett (1993, p. 328) propose that C is the product of a volumetric runoff 
coefficient C-v and a routing coefficient C-r. But as the latter is an unexplained constant 1.3 and 
the former is a regressed “urban percentage runoff”/100, true science again seems to be 
illusionary. 

What’s above is indicative of C's bleak scientific underpinning. C stems from some combination of 
physical processes, to be sure, but we’ve little explanation for such physics. 

C as an Empirical Parameter 

What follows indicates empirical reality, bewildering perhaps in small doses, but rich when viewed 
in total. C is best quantified by the art of watershed observation. 

Tables summarize C for various land treatments, the latter term not necessarily implying human 
intervention. Many of the slope-unspecified values are reprinted from one reference to the next 
for more than 50 years. Check your hydrologic references for “Railroad Yards” in the C table. If 
you find it, you have this data set. Railroads aren't as big of concern today. 

The topic of return periods is addressed later in this chapter, but for reference, Tables 1 and 2 
represent 2 to 10-year T-r’s according to ASCE (1996, p. 591) or 5 to10 years according to ODOT 
(1990, p. 11). The values simply represent typical values for storms of unremarkable magnitude. 
 



Table 1. Rational C’s, Urban Conditions 
Slope 

 < 0.02 0.02-0.10 > 0.10 
light 0.50-0.80 0.50 0.70 0.80 Industrial 
heavy 0.60-0.90 0.60 0.80 0.90 
downtown 0.70-0.95 0.80 0.85 0.85 Business 
neighborhood 0.50-0.70    
single-family 0.30-0.50    
multi-units, 
detached 0.40-0.60    
multi-units, 
attached 0.60-0.75    
suburban  0.25-0.40    
1-3 units/ac  0.35 0.40 0.45 
3-6 units/ac  0.50 0.55 0.60 
6-15 units/ac  0.70 0.75 0.80 

Residential 

apartments 0.50-0.70 0.50 0.60 0.70 
Park & Cemetery 0.10-0.25 0.10 0.15 0.25 
Playground 0.20-0.35 0.20 0.25 0.30 
Drive & Walk 0.75-0.85 0.75 0.80 0.85 
Railroad Yard 0.20-0.35    
Roofs 0.75-0.95    
Water Impoundment 1.00    

soil unspecified  0.17 0.22 0.35 
sandy soil  0.05-0.10* 0.10-0.15* 0.15-0.20* 

Lawn 

heavy soil  0.13-0.17* 0.18-0.22* 0.25-0.35* 
unspecified  0.90 0.90 0.90 
asphalt 0.70-0.95    
concrete 0.70-0.95    
brick 0.70-0.85    
gravel  0.50 0.55 0.60 
earth shoulder  0.50 0.50 0.50 
grass shoulder  0.25 0.25 0.25 
earth sideslope  0.60 0.60 0.60 
turf sideslope  0.30 0.30 0.30 

Roadway 

turf median  0.25 0.30 0.30 
*Slope < 0.02, 0.02-0.07, > 0.07 
Sources: Chow, 1964, p.14-7, 21-38; ASCE, 1996, p. 591; ODOT, 1990, p. 11 

 



Table . Rational C’s, Rural Conditions 
Slope 

 < 0.05 0.05-0.10 > 0.10 
sand & gravel  0.25* 0.30* 0.35* 
sandy loam 0.20 0.30 0.40 0.52 
clay & loam  0.50* 0.55* 0.60* 
clay & silt 
loam 0.40 0.50 0.60 0.72 

Cultivated 

tight clay 0.50 0.60 0.70 0.82 
  0.25* 0.30* 0.35* 
sandy loam 0.15 0.10 0.16 0.22 
clay & silt 
loam 0.35 0.30 0.36 0.42 

Pasture, 
Range, 
Meadow 

tight clay 0.45 0.40 0.55 0.60 
  0.10* 0.15* 0.20* 
 0.30 0.10 0.20 0.30 
sandy loam 0.10 0.10 0.25 0.30 
clay & silt 
loam 0.30 0.30 0.35 0.50 

Woodland, 
Forest 

tight clay 0.40 0.40 0.50 0.60 
Slope < 0.02, 0.02-0.10, > 0.10 
Sources: Chow, 1964, p. 21-38; ASCE, 1996, p. 590) 

For bounded ranges, McCuen (1998, p. 377) recommends intermediate values with 0.05 
precision, either halfway between the bounds or rounded up. 

Fig. 1 shows C as a function of residential dwelling units per acre (King Co., 1998, p. 3-13). Also 
shown is the decimal impervious Imp including local streets (City of Albuquerque, 1997, p. 22-11). 
As might be anticipated, C and Imp are closely related. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG 1. DU’s 
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Figure 1. Single Family Density, Imp and C



Fig. 1.1 shows the tie between C and Imp from experimental comparison. Maidment (1993 p. 
28.2) reports a third-order polynomial fit, but the general trend and the individual spread together 
suggest a relationship that in an approximate sense is linear. 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 1.1 C AND IMP 

As FHWA (1996, p. 3-6) notes, “Higher values are usually appropriate for steeply sloped areas.... 
because infiltration and other losses have a proportional smaller effect on runoff in these cases.” 
As can be seen, C increases with slope. Faster runoff has less opportunity to disappear. 

According to Chow (1964, p. 21-38), “Watershed slope is not directly considered in the selection 
of C, but the effects of slope are included, since rainfall duration is taken as equal to the time of 
concentration.” While Chow’s attempt to separate slope from C has its theoretical merit, most 
data sets, ours included, don’t follow that guidance. 

The influence of slope appears again in Section 5 where it impacts time of concentration. While 
the reasoning there relates to i-ave, not C, the impact on Q is the same. Q goes up. 

C Components 

Tables 3 and 4 partition C into components. One could presumably reduce much of Figs. 1-6 to 
similar rule bases, but it hasn’t been done. Table 3 partitions C into three factors. C is 1.00 minus 
their sum. For flat, medium clay and loam cultivated land, C is 1.00 – 0.30 – 0.20 – 0.10 = 0.40. 
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Figure 1.1. Imperviousness and Rational C



Table 3. Deductions from Unity to Obtain Rational C, 
   Agricultural Areas 

Factor C subtraction 
Topography 
  Flat, average S = 0.0002-0.006 
  Rolling, average S = 0.003-0.004 
  Hilly, average S = 0.03-0.05 

 
0.30 
0.20 
0.10 

Soil 
  Tight impervious clay 
  Medium combinations of clay and loam 
  Open sandy loam 

 
0.10 
0.20 
0.40 

Cover 
  Cultivated 
  Woodland 

 
0.10 
0.20 

Source: Gray (1970), p. 8.5 

Table 4 provides another tabular estimate. These components are summed. C for grassland with 
0.02 slope, a 100-year T-r and 50 inch mean annual precipitation is 0.35 – 0.05 + 0.05 + 0.03 = 
0.38. 
 

Table 4. Rational C, Rural Areas 
Factor C partial 

Ground Cover 
  Bare surface 
  Grassland 
  Cultivated 
  Timber 

 
0.40 
0.35 
0.30 
0.18 

Slope 
  < 0.05 
  > 0.10 

 
- 0.05 
+ 0.05 

Return Period 
  < 20 years 
  > 50 years 

 
- 0.05 
+ 0.05 

Mean Annual Precipitation 
  < 24 inches 
  > 36 inches 

 
- 0.03 
+ 0.03 

Source: Gupta (1989), p. 621 

Component approaches such as those of Tables 1 and 2 make clear the relative importance of 
factory. The approach does not catch the significance of interactions, however. 

C and NRCS Considerations 

Table 5 introduces Hydrologic Soil Group (HSG), a Natural Resources Conservation Service 
(formerly the Soil Conservation Service) soil classification. HSG A is relatively permeable. HSG D 
is relatively impermeable. HSG B and C fall between. NRCS has accordingly mapped much of 
the United States. Chapter 6 contains more information. C increases as HSG progresses from A 
to D, the logical consequence of decreasing infiltration capacity. The last “Pervious” land 
treatment is for Erie and Niagara Counties (Debo and Reese, 1995, p. 217). The others are less 
site-specific. Table 5 suggest that HSG’s influence upon C is predictably consistent. 
 



Table 5. Rational C’s, T-r < 25 yr, >= 25 yr 
Slope 

 < 0.02 0.02-0.06 > 0.06 

HSG    A          B 
   C          D 

   A          B 
   C          D 

   A          B 
   C          D 

1/8-acre Lots 25, 33   27, 35 
30, 38   33, 41 

28, 37   30, 39 
33, 42   36, 45 

31, 40   35, 44 
38, 49   42, 54 

1/4-acre Lots 22, 30   24, 33 
27, 36   30, 38 

26, 34   29, 37 
31, 40   34, 42 

29, 37   33, 42 
36, 47   40, 52 

1/3-acre Lots 19, 28   22, 30 
25, 33   28, 36 

23, 32   26, 35 
29, 38   32, 40 

26, 35   30, 39 
34, 45   39, 50 

1/2-acre Lots 16, 25   19, 28 
22, 31   26, 34 

20, 29   23, 32 
27, 35   30, 38 

24, 32   28, 36 
32, 42   37, 48 

1-acre Lots 14, 22   17, 24 
20, 28   24, 31 

19, 26   21, 28 
23, 32   29, 35 

22, 29   26, 34 
31, 40   35, 46 

Industrial 67, 95   68, 85 
68, 86   69, 86 

68, 85   68, 86 
69, 86   69, 86 

68, 86   69, 86 
69, 87   70, 88 

Commercial 71, 88   71, 89 
72, 89   75, 89 

71, 88   72, 89 
72, 89   72, 89 

72, 89   72, 89 
72, 90   72, 90 

Streets 70, 76   71, 80 
72, 84   73, 89 

71, 77   72, 82 
73, 85   75, 91 

72, 79   74, 84 
76, 89   78, 95 

Parking 85, 95   85, 95 
85, 95   85, 95 

86, 96   86, 96 
86, 96   86, 96 

87, 97   87, 97 
87, 97   87, 97 

Cultivated Land   8, 14   11, 16 
14, 20   18, 24 

13, 18   15, 21 
19, 25   23, 29 

16, 22   21, 28 
26, 34   31, 41 

Pasture 12, 15   18, 23 
24, 30   30, 37 

20, 25   28, 34 
34, 42   40, 50 

30, 37   37, 45 
44, 52   50, 62 

Meadow 10, 14   14, 20 
20, 26   24, 30 

16, 22   22, 28 
28, 35   30, 40 

25, 30   30, 37 
36, 44   40, 50 

Forest   5, 8       8, 10 
10, 12   12, 15 

  8, 11   11, 14 
13, 16   16, 20 

11, 14   14, 18 
16, 20   20, 25 

Open Space   5, 11     8, 14 
12, 18   16, 22 

10, 16   13, 19 
17, 23   21, 27 

14, 20   19, 26 
24, 32   28, 39 

Pervious.   4,  9      7, 12 
11, 16   15, 20 

  9, 14   12, 17 
16, 21   20, 25 

13, 18   18, 24 
23, 31   28, 38 

Source: McCuen, 1998, p. 376 

To keep the reference data together, Table 5 also shows return period T-r up to 25 years and 25 
years or more. T-r is analytically pursued in Section 6, so for now may simply be taken as 
presented. C increases, again with reasonable predictability, with T-r. 

NRCS Curve Number CN estimates runoff volume, the subject of Chapter 6. The Rational 
Method estimates runoff rate. CN and C are not easily related, but not for lack of effort. C for an 
infinite sponge is 0.00. CN is 0. C for a sheet of glass is 1.00 if wave diffusion is ignored. CN is 
100. Such convenient agreement between end points suggests an erroneous linear 
correspondence between. CN 50 often produces no runoff while a 0.50 C produces runoff at half 
the precipitation rate. 

The Rossmiller equation provides one C estimate based on CN (Viessman and Lewis, 1999, p. 
316). Eqs. 5 and 6 are formulated to emphasize the parametric roles. 
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where CN is the Curve Number, T-r is return period in years, Imp is decimal impervious, S is 
dimensionless slope and i-ave in rainfall intensity in inches/hour. The irrational constants derive 
from mathematical reductions. If T-r is 10 years, Imp is 0.2, CN is 87, S is 0.04 and i-ave is 1.0 
inch/hour, K is 2.2823 and C is 0.41. Dropping CN to 77, C is 0.31. Eqs. 5 and 6 are appropriate 
only within narrow bounds. The safe prediction is that that high C’s are likely to be found where 
CN’s are also high. Don't venture beyond that unless the NRCS forces you to. 

C varies with soil moisture, Antecedent Moisture Condition (AMC I = dry, II = normal, III = wet) 
being the NRCS specification. An AMC I may have a C of 0.05 and an AMC III may have a C of 
0.60 for what otherwise appears to be identical storms. It is unfortunate that C’s dependence on 
AMC has received little analysis. Chadwick and Morfett (1993, p. 328) present a U.K. alternative, 
in rearranged form, 

7 Eq.     
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where Imp is decimal impervious (Table XX, Chapter 3), SOIL is a number depending on soil type 
and UCWI is the urban catchment wetness index (mm) related to mean annual rainfall. In 
Chadwick and Morfett’s example, Imp is 0.35, SOIL is 0.3 and UCWI is 72 mm. C is thus 0.28. 
While SOIL and UCWI parameters would not be available for most applications, Eq. 7 does 
illustrate C’s dependency on soil moisture. 

C and i-ave 

An often-noted dependency is that of C to i-ave, the latter being an inverse function of t-d. As C 
inversely varies with t-d, C should increase as i-ave increases. According to Gray (1970, p. 8.4), 
“Unfortunately, quantitative information of the influence of intensity on C is completely lacking.” In 
fact, quantitative information is not completely lacking, as evidenced by site-specific Figs. 2 
(Ponce, 1989, p. 123) and 3 (Singh, 1988, 123). 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 2. INTENSITY 
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FIG. 3. CHOSHOCTON 

Figs. 2 and 3 slope upward as expected. A given depth of rainfall over a shorter t-d (thus of 
greater i-ave) has a greater C. As abstraction is generally limited by soil and/or interception 
capacity, this makes hydrologic sense. Eq. 8, the Roe and Snyder modification for small 
agricultural watersheds, makes the Rational Method exponential in i-ave. 

8 Eq.     cont
a
ave ACiQ =  

where a is 1.14 and C varies according to the watershed groups in Table 6. 
 

Table 6. Roe and Snyder Coefficient C 
Group i-ave (in/hr) t-d (min) A (ac) C 

I < 0.5 ave 114 75-373 0.60 
II > 1.5 ave 38 21-112 0.36 
III < 1.0 ave 51 75-373 0.22 
IV > 1.0 ave 33 75-373 0.07 

Source: Singh, 1988, p. 140. 

UDFCD (2001, p. 25) approximates C as the ratio of runoff depth Q to the 2-hour rainfall depth P-
2 (Eq. 8.5) which in turn relates C to the respective I-ave (Eq. 8.6). 
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While Eq. 8.6 looses the Rational Method’s crucial general-case i-ave meaning, it may provide a 
quick estimate. 

If one were to match the Eq. 8 result by adjusting C and keeping exponent a at 1.00, C would 
appear to increase with i-ave. If, however, C has already been adjusted for t-d via another route, 
don't doubly correct. 

C and Timing 

C varies with length of time prior to thorough wetting of the soil. C modification begins at the start 
of t-c. Chow (1964, p. 20-8) mentions “some designers use values of C varying with length of time 
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Figure 3. Rational C's and Rainfall Intensity, Choshocton, Ohio



prior to a thorough wetting of the soil.” Eq. 9 does this, relating C to degree of imperviousness 
and timing within the storm, 
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where C’ is the C uncorrected for antecedent rainfall and t is the time in minutes from beginning 
of rainfall to the beginning of t-d (Gupta, 1989, p. 620). Using Gupta’s example, C’ is 0.65 and the 
20-minute t-d begins 80 minutes into the storm. Corrected C is 0.79 when t-d begins (t = 80) and 
0.81 when t-d ends (t = 100). C for the event is the 0.80 average. Beware of this example, 
however, as the 0.65 is for a condition we would unlikely know. What Eq. 9 best shows is how the 
C creeps up during an event 

C and Return Period 

Most references append a T-r note to C tables. Chow (1964, p. 14-7) states that C is higher than 
those tabled for storm events exceeding a 5 or 10-year T-r, but does not speculate how much 
higher. 

Table showed C for T-r’s less than 25 years and larger C’s for T-r’s equalling or exceeding 25 
years. The larger C was often about 25 percent higher, reasonably in accord with Table 7’s 
multipliers. 
 

Table 7. Rational C T-r Multipliers 
T-r (years) Multiplier 

2-10 1.0 
25 1.1 
50 1.2 
100 1.25 

Source: Viessman & Lewis (1996), p. 315 

When applied to a C, the Table 6 product cannot exceed 1.00. If a 5-year C is 0.90, the 50-year C 
can’t be 1.2 * 0.90 = 1.08. It's 1.00. 

Chow (1964, p. 20-9) and Singh (1988, p. 140) cite the Bernard modification, Eq. 10, 
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where T-r is return period in years, C-100 is C for the 100-year event and x is a geographical 
constant. If x is 0.075, Eq. 10 approximates Table 7. Chow calls this the “general rational formula” 
as if T-r alone pulls all things together. 

Table 8 shows the impact of T-r on C for Austin, TX. This data confirms behaviors seen earlier 
related to slope, vegetation and development. 
 



Table 8. Rational C and Return Period 
T-r (yr) 

 2 5 10 25 50 100 500 
Lawn and Impervious  

< 0.02 0.31 0.34 0.37 0.41 0.44 0.48 0.57 
0.02-0.07 0.37 0.40 0.43 0.46 0.49 0.53 0.61 

< 50% grass 
cover 

> 0.07 0.40 0.43 0.45 0.49 0.52 0.55 0.62 
< 0.02 0.25 0.28 0.30 0.34 0.37 0.41 0.53 
0.02-0.07 0.33 0.36 0.38 0.42 0.45 0.49 0.58 50-75% grass 

cover 
> 0.07 0.36 0.39 0.42 0.45 0.48 0.52 0.60 
< 0.02 0.21 0.23 0.25 0.29 0.32 0.36 0.49 
0.02-0.07 0.29 0.32 0.35 0.39 0.42 0.46 0.56 > 75% grass 

cover 
> 0.07 0.34 0.37 0.40 0.44 0.47 0.51 0.59 

Asphalt 0.73 0.77 0.81 0.86 0.90 0.95 1.00 
Concrete, Roofs 0.75 0.80 0.83 0.88 0.92 0.97 1.00 
Undeveloped Land  

< 0.02 0.31 0.34 0.36 0.40 0.43 0.47 0.56 
0.02-0.07 0.35 0.38 0.40 0.44 0.47 0.51 0.58 Cultivated 
> 0.07 0.39 0.42 0.44 0.48 0.51 0.54 0.61 
< 0.02 0.25 0.28 0.30 0.34 0.37 0.41 0.53 
0.02-0.07 0.33 0.36 0.38 0.42 0.45 0.49 0.57 Pasture, Range, 

Meadow 
> 0.07 0.37 0.40 0.42 0.46 0.49 0.53 0.60 
< 0.02 0.22 0.25 0.28 0.31 0.35 0.39 0.48 
0.02-0.07 0.30 0.33 0.35 0.39 0.42 0.46 0.55 Woodland, 

Forest 
> 0.07 0.36 0.39 0.41 0.45 0.48 0.52 0.59 

Source: Chow, Maidment and Mays, 1988, p. 498 

Recall that Table 7 recommends increasing a 2 or 10-year C by 25 percent to estimate the 100-
year value. Table 8 suggests something nearer 40 percent. 

Fig. 15 shows an alternative T-r adjustment to C. In this method, C-max is effectively the same as 
C-100 in Eq. 10. Start with C for a known T-r, find C-max graphically and use that value to 
compute C for another T-r. A 90 percent impervious watershed has a C for a 10-year event (C-
10) of 0.86. What’s C-50? C-10/C-max is 0.83. C-50/C-max is 0.98. C-50/C-10 is thus 1.18. This 
multiplied by 0.86 is 1.02. As this exceeds 1.00, C-50 is 1.00. 

 

 

 

 

 

 

 

 

 

 

 

FIG. 4. T-r CORRECTION 
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Figure 4. Return Period Correction (Gupta, 1989, p. 619)



Maidment (1993, p. 19-8) presents a “probabilistic approach” to C vs. T-r, an empirical regional 
formulation employed in Australia. Fig. 16's two frequency plots illustrate the first part of the 
approach. The watershed would need to have been instrumented for both rainfall intensity and 
runoff rate over a long period. The intensity is i-ave for the known t-c. Backcalculated C’s 
increase from 0.58 to 0.76 for 2 to 500-year T-r’s, the trend anticipated in this section. The 
method is probabilistic in the sense that the data record conveys the stochasticity of nature. The 
second part of the approach pursues spatial distribution of C’s when multiple watersheds are 
mapped. 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 5. INTENSITYT-r 

Average rainfall intensity fro the Seattle area is estimated by Eq. 10.1. 

10.1 Eq.       24
b

c
ave

t

aP
i =  

where i-ave is in inches/hour, P-24 is the 24-hour storm depth in inches for the appropriate T-r, t-c 
is time of concentration in minutes between 6.3 and 100, and a and b are coefficients as given in 
Table 8.1 
 

Table 8.1. Rational C a and b Coefficients 
T-r (years) a b 

2 1.58 0.58 
5 2.33 0.63 
10 2.44 0.64 
25 2.66 0.65 
50 2.75 0.65 

100 2.61 0.63 
Source: King Co., 1998, p. 3-13 

A 100-year event of 3-inch depth has an 1.19-inch/hour i-ave for a 20 minute t-c. 

Unaddressed C Factors: Area and Hydraulics 

Yield (cfs/acre) is generally inversely related to watershed area. An illustrative 100-acre 
watershed yields 25 cfs for a protracted 0.5-inch/hour storm. C thus must be 0.50. The same 
storm produces 75 cfs for a 500-acre basin. Runoff finds more opportunity for abstraction along 
the longer route and the hydrograph has more time to diffuse. If C is 0.50, however, Eq. 1 
predicts 125 cfs for 500 acres. To hit the 75 cfs, C for 500-acres must be 0.30. C would benefit 
from an area correction in the manner that point precipitation depths are reduced when spread 
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Figure 5. Intensity Return Periods



over a large watershed (ASCE, 1996, p, 58). What is done in practice, however, is to dodge the 
area correction by confining the Rational Method to relatively small areas. We’ll look at this again 
in Section 8. 

A scientific C should, but doesn’t, incorporate the hydraulics of backwater (Debo and Reese, 
1995, p. 3) or temporary ponding (ASCE, 1992, p. 91 and Maidment, 1993, p. 9.15). The Rational 
Method is oblivious to the perspective of fluid mechanics or physically-based hydrologic 
simulation. Watershed aspects that complicate the hydraulics probably also complicate the C. 
Proceed with care. 

Composite C 

Many watersheds are not of a single land treatment. Eq. 11 is an area-weighted composite C for 
a watershed spatially distributed by subareas. 

11 Eq.       1

tot

n

i
ii

comp A

AC

C
∑
==  

where the watershed has n subareas, C-i and A-i are C and A-cont of subarea i. A-tot is the sum 
of A-i’s. We will employ Eq. 11 when we subdivide a watershed by isochrones later in this 
chapter. 

If a 20-acre watershed has subareas of 5, 6, 6 and 3 acres with respective C’s of 0.40, 0.30, 0.40 
and 0.10, C-comp is 0.325. A football team that averages X pounds isn’t the same as a team 
where each player weighs X. Likewise, runoff from a 0.325 uniform C watershed may not be the 
same as the combined runoff from the 4-subareas. Be aware of averaging's effect on both timing 
and abstracts. 

Average Intensity and Time of Concentration 

Chapter 1 employed a variety of graphics describing a rainfall event. The Rational Method utilizes 
but a small portion of that information, the average intensity over a specified duration. Chapter 1 
illustrated this measure in several figures: 1.39 inches/hour for 30 minutes. The Rational Method 
sees this i-ave no differently than that of a storm that rains 13.9 inches over 10 hours at a uniform 
rate. We'll return to the issue, but you should already be questioning if the two storms, each with 
a 1.39 inches/hour i-ave, really have the same Q. 

For many Rational Method calculations, we can stick with the water travel t-c viewpoint. There are 
many methods for such estimation and to a large degree, the Rational Method has been 
calibrated accordingly. 

We pursue t-c because Mulvaney's contribution depends upon it,. The Rational Method runoff 
model is such that Q from any rainfall intensity is a maximum when that rainfall intensity lasts as 
long or longer than t-c. Fig. 6 illustrates. 



 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 6. LONG t-c 

Rain falls at 1.0 inch/hour for a 15-minute t-d. (Total rainfall is thus 0.25 inches, a value not used.) 
Time of concentration is 5 minutes. Five minutes after initiation of rainfall, the total watershed 
contributes to runoff at the outlet. Since Rational Method i-ave is constant, runoff intensity 
(inches/hour) or runoff rate Q (inches/hour times watershed area) is unchanged until the storm 
stops. C, by inspection, is 0.70. The hydrograph’s falling limb then begins as the subareas 
nearest the outlet complete their drainage. If t-d were 6, 15 or 30 minutes, anything equalling or 
greater than the 5-minute t-c, peak rate would not alter. 

Fig. 7 shows the hydrograph when t-d is only 4 minutes, less than t-c. The rising limb is the same 
as that of Fig. 6 for 4 minutes. When the storm stops, however, the falling limb begins. (Figs 5 
and 6 are simplified in this aspect. To the degree that runoff is detained in the upper reaches, the 
hydrograph crest could be delayed.) Were the Rational Method applied to the entire basin (and it 
shouldn’t be), Fig. 6’s Q implies a 0.60 C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 7. SHORT t-c 
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Figure 6. Rainfall/Runoff Intensities
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The Rational Method requires that t-d equals or exceeds t-c. Some observers take issue with the 
“or exceed” aspect of the rule. Such objection applies when the problem is viewed as one where 
i-ave isn’t given, but is itself a variable, per a PID function (Fig. 9, Eq. 9, Chapter 2). If that is the 
problem definition, the largest Q for a given T-r comes from the largest i-ave. The downward-
sloped PID function has the greatest i-ave at the smallest allowable t-d, which is t-c and nothing 
more. To apply the Rational Method, find t-c (the remainder of this section) and use this value to 
maximize i-ave. 

Contributing Area 

Even Eq. 1’s A-cont term blends the boundary between art and science. Judgment is once more 
required. Debo and Reese (1995, p. 214) suggest several considerations regarding drainage 
area: 

  Existing and future flow paths along lot lines, at street intersections, diversions, etc. 
  Impact of regrading on flow direction and velocity. 
  Impact of drainage structures upon T-r. 
  Connection of impervious areas. 
  Suitability of C-comp. 
  Flow direction and rate for events in excess of the design event. 

Observed Q’s generally don’t vary linearly with A-cont. Our example had A-cont’s of 100 and 500 
acres and observed Q's of 25 and 75 cfs, not 25 and 125 cfs per Eq. 1. The Rational Method 
tends to overestimate Q when a C calibrated for a small watershed is applied to a larger area. Fig 
8 illustrates the error. The error increases with latter’s size. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 8. DISCHARGE VS. AREA 

While nothing in Eq. 1 mathematically imposes a maximum on A-cont, the Rational Method has 
an areal limit. Up to some limit (200 acres in the Fig. 8 example), linearizing a curvilinear process 
seems reasonable. Sources differ, as might be expected, as to this limit. Table 9 summarizes 
recommendations. Don’t presume that all recommendations are general in nature; some may be 
in particular context. 
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Table 9. Area Limits 
Area (acres) Reference 

20 Debo and Reese, 1995, p. 209 
50 to 100 Wanielista, Kersten and Eaglin, 1997, p. 209 
100 or much less Debo and Reese, 1995, p. 194 
100-200 Chow, 1964, p. 25-5 
100-200 ASCE, 1992, p. 90 
100-240 Singh, 1992, p 599 
a few hundred Bras 1990, p. 406 
250, urban ASCE, 1996, p. 580 
300 ODOT, 1990, p. 9 
325-625 Ponce, 1989, p.119 
a few square km * ASCE, 1996, p. 504 
640 Gray, 1970, p. 8.2 
640 USACE, 1996, p. 110 
640 Veissman and Lewis, 1996, p. 318 
2500, rural Gupta, 1989, p. 621 
*square km = 250 acres 

UDFCD (2001, p. 11) allows a 5-acre Rational Method minimum when Imp is less than 0.5 and 
10 acres when Imp exceeds 0.5. 

A key variable in the areal limit is the design storm. The more uniform the rainfall in both temporal 
and spatial sense, the greater the allowable A-cont. Keep Table 9 in mind as you review the 
assumptions reviewed at the end of this chapter. You may develop doubts about the larger 
values. 

To this point, we’ve regularly appended the “-cont” to the A term to remind ourselves that Eq. 1 
relates to contributing area, the land surface from which runoff is derived at any time. A minute 
after a storm begins, A-cont may be only a few square feet. At t-c, by definition, A-cont is the 
entire watershed. 

AASHTO (1991, p. 7-22) warns, “in some cases, runoff from a portion of the drainage area which 
is highly impervious may result in a greater peak discharge than would occur if the entire area 
were considered. In these cases, adjustments can be made to the drainage area by disregarding 
those areas where flow time is too slow to add to the peak discharge.” 

ODOT (1990, p. 9) says, “On some combinations of drainage areas, it is possible that the 
maximum rate of runoff will occur from the higher intensity rainfall for periods less than the time of 
concentration for the total area, even though only a part of the drainage area may be contributing. 
This might occur where one part of the drainage area is highly impervious and has a short time of 
concentration, and another is pervious and has a much longer time of concentration.” 

These possibilities would violate the nature of the Rational Method if we could only look at total 
watershed area. By considering time-dependent A-cont, however, the Rational Method holds (or 
perhaps more honestly, has no more difficulties that before). Chow (1964 p. 20-9) designates 
what follows as the “Zone Principle”. ASCE (1992, p. 94) calls what follows the “Contributing Area 
Method”, but we’ll reserve that title for a fuller hydrograph procedure in Section. 8. 

Isochrones 

Isochrones are contours joining watershed locations that share the same travel time (and thus t-c) 
to the basin outlet. Isochrones cannot cross. Isochrones cannot originate or terminate anywhere 
but on the watershed boundary (Singh, 1988, p. 130). Fig. 9 illustrates an example. 



 

 

 

 

 

 

 

 

 

 

 

 

FIG. 9 ISOCHRONES 

Isochrones are the basis for tracking A-cont and thus explaining the possibility of peak Q before 
watershed t-c. Table 10 is for a 20-acre watershed with isochrones determined for 5-minute time 
steps. At 5 minutes, the bottom 5 acres contribute runoff at the outlet. At 10 minutes, the next 6 
acres of upstream watershed are contributing, etc. The third column shows cumulative A-cont. 
The fact that the entire watershed contributes runoff at 20 minutes makes t-c 20 minutes de facto. 
The fifth column shows the respective C-comp (Eq. 11) for the cumulative A-cont. 
 

Table 10. Isochronal Analysis 
t-d A A-cont C C-comp i-ave Q 

(min) (ac) (ac)   (in/hr) (cfs) 
5 5 5 0.40 0.400 2.46 4.91 

10 6 11 0.30 0.345 2.10 7.98 
15 6 17 0.40 0.365 1.85 11.47 
20 3 20 0.10 0.325 1.66 10.79 
25  20  0.325 1.51 9.83 
30  20  0.325 1.39 9.05 
35  20  0.325 1.29 8.41 
40  20  0.325 1.21 7.86 
45  20  0.325 1.14 7.40 
50  20  0.325 1.08 7.00 
55  20  0.325 1.02 6.64 
60  20  0.325 0.97 6.33 

For an illustrative PDD, return to the illustrative 10-year event of Chapter 3. As we there noted, c 
is 20, e is 1.0, f is 15 and g is 0.7. The sixth column of Table 10 shows the thus-computed 
average intensities. 

The last column is the Eq. 1 Q for the contributing area as duration increases. Fig 10 reveals the 
maximum Q. While the overall basin t-c is 20 minutes, because of the subareas and their 
respective C’s, the 15-minute t-d produces the greatest Q. Change C of the upstream 3 acres 
from 0.10 to 0.30 and Q peaks at 20 minutes, not 15. Doing Table 10 by hand, you could stop at 
t-2, 20 minutes. We know from Section 4 know that after t-c, i-ave decreases, and thus Eq. 1 Q 
decreases. 
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Figure 9. Isochrones 



 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 10. ISOCHRONAL QP 

Fig. 10 is not a hydrograph, the topic of Chapter 12, though the axes correspond. Fig 10 shows 
Q’s for i-ave over given durations, not i-inc . Fig 10 represents the Q appropriate to nested t-d’s 
within the storm, not a clock. The 11.47 cfs peak runoff stems from the heaviest 15-minute 
rainfall, whenever it occurs. 

When Q peaks before t-c, the discharge is said to peak at the “critical storm duration”. Singh 
(1988, p. 141) pursues the theoretical basis. If you enjoy differential equations, we’re solving Eq. 
1 for increasing A-cont, changing C-comp and decreasing i-ave. Knowing A-cont as a function of 
time, C-comp as a function of A-cont and i-ave as a function of time, differentiate with respect to 
time and maximize Q. 

The above example deals with sequential subareas. The 5-acre subarea is below the first 6-acre 
area, etc. What if outflows from two subareas converge at a mutual outlet, parallel subareas in 
schematic form? Were we doing a watershed simulation, perhaps with HEC-1 or HEC-HMS, we 
would simply add the two hydrographs. We can’t just add the two Rational Method Q’s, however, 
as we have no assurance that they occur at the same time. 

Isochrones provide us a solution for parallel subareas. Analyze each subarea as we did above 
using isochrones of a constant time-step. These are computationally separate problems, though 
you need only compute the i-ave’s once. Each subarea will have its own isochrones and the total 
may not be the same. Add the resulting Q columns of the two Table 10’s to find the combined 
peak. This “split” watershed approach is used in more-complex hydrologic modeling as well. 
Connected impervious subareas are modeled for their hydrograph spike while the pervious 
watershed is still in transit to the outlet. 

Wanielista, Kersten and Eaglin’s (1997, p. 241) define the product of C and A-cont as “Equivalent 
Impervious Area”. The equivalency conceptually adjusts watershed subareas as if all have a 
plastic surface. Such interpretation can save a few steps in some computations, but leads to 
errors when timing is considered (the t-c issue of Section 5). Leave this as an interesting thought, 
not an analytic shortcut. 

In Chapter 12 we will use the Rational Method for hydrograph generation, extending the method 
from one of Fig XX peak flow estimation to one of runoff rate over time. Although the power of the 
Rational Method tends to wane at that level of hydrologic modeling, the method caries on, largely 
because many hydrologists never progress beyond Eq. 1. We will then compare Rational 
Method-based solutions to other hydrograph techniques. This current chapter, the computations 
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Figure 10. Isochronal Peak Discharge



to this point and the theoretical foundation to be discussed, will help you discern the relative 
merits in hydrograph modeling. 

Assumptions, the Science of the Art 

To this point, we have focused largely toward getting results: estimating C, calculating i-ave, 
determining A-cont. There have been many choices, in final rendition, your professional 
decisions. To the degree that you rely on experience, breadth of perspective and realistic 
judgment, you are practicing an art. You’ll sense what probably fits together and what probably 
doesn’t. If your exposure to the Rational Method is no more than that of this course, you at least 
are equipped to develop your talent. You already know more than many of your colleagues 
who’ve been cranking out Q’s for years. 

Our objective is not to practice the Rational Method by some strict scientific checklist. Under 
harsh light, it looks weak. Our objective is to anticipate the concerns that should be raised every 
time we put the method to use. By so anticipating, we can better formulate our solutions. We can 
sense were our results may be biased. We can look for other methods where the Rational 
Method is inappropriate. 

Singh (1992, p. 598) lists eight Rational Method assumptions. Chow (1964, p. 14-7) finds the 
assumptions to hold best for paved areas with gutters and sewers of fixed hydraulic 
characteristics. As you consider each assumption, again think of how it relates to watersheds you 
know. 

Assumption 1. “The peak rate of runoff is a maximum and is a direct function of the average 
rainfall intensity throughout the time of concentration. In other words, the computed discharge is 
the maximum that can occur for the selected rainfall intensity from that basin and that discharge 
occurs at the time of concentration and beyond.” 

Does i-ave adequately represent the real event? Debo and Reese (1995, p. 210) observe that 
convective storm cells in arid and semi-arid climates are relatively small with high, rapidly-varied 
intensity. The Rational Method may be inappropriate. When runoff seems to be more determined 
by simultaneous intensity than by average rate, Assumption 1 is in question. 

Assumption 2. “The maximum discharge resulting from a rainfall intensity equal to or greater than 
the time of concentration is a simple, direct function of the rainfall. In other words, runoff [rate] is 
directly proportional to rainfall.” 

Is C sufficiently constant? Assumption 2’s flag is the “directly proportional” assertion. As we’ve 
seen, C is not independent of the storm. Virtually no other hydrologic model presumes such 
proportionality. The Rational Method works only to the extent we have an empirical C appropriate 
to the situation. 

Assumption 3. “The frequency of the peak discharge is the same as the frequency of rainfall. This 
assumption is not strictly correct, but does not create significant problems for the limited purposes 
of this method.” 

Does the 100-year discharge come from the 100-year storm? Veissman and Lewis (1996, p. 317) 
find Assumption 3 reasonable in the design range. FHWA (1984, p. 137) indicates that 
approximately 25 percent of “modest to important” federal projects are sized by assuming 
identical rainfall and runoff frequencies. Peak discharge has roughly the same probability of 
occurring as the corresponding storm if the storm isn’t unusually large. Lognormal probability 
plots of precipitation and runoff diverge for extreme events. The Rational Method works better for 
2-year events than 100-year events. 

Assumption 4. “The relation between peak discharge and the drainage area is the same as the 
relations between peak discharge, intensity, and duration of rainfall. This means that the drainage 
basin is considered linear.” 

Should C, i-ave and A-cont be simply multiplied? “Linear” is used in the sense of mathematical 
function. Given a large Q, i-ave and A-cont data set and taking log transforms, Assumption 4 
suggests that multiple linear regression without additional coefficients should fit the C-comp to 



Eq. 1. Although most C’s stem from less-objective quantification, years of experience have 
evolved approximate fits. While Assumption 4 may not be scientific, we can work with the art. 

We’ll not trust even approximate linearity, however, for analyses that fall beyond the range for 
which the Rational Method was developed. Recall Fig. 19 where large A-cont’s produced 
increasingly large error. 

Assumption 5. “The coefficient of runoff, C, is the same for storms of various frequencies. This 
means that all the losses on the drainage basin are a constant. This assumption may be 
reasonable for a drainage basin covered with an impervious surface, but not for other drainage 
surfaces.” 

Is C independent of T-r? We know it’s not. As a watershed is made wetter by a larger storm, 
rainfall of the same intensity will find less capacity for abstraction. The fortunate side of this 
erroneous Assumption 5 is that corrections are available. A dilemma is that we have T-r 
corrections for both C and i-ave. Applying both may be excessive. 

Assumption 6. “The coefficient of runoff is the same for all storms on the drainage basin 
regardless of antecedent moisture condition. Variation in the runoff coefficient is often a function 
of drainage area. This implies that the drainage basin for which the assumption is valid is 
necessarily small.” 

Does it matter if it rained yesterday? Assumption 6 is woefully in error and the deficiency lacks a 
clean remedy. The safe approach is to limit the Rational Method to typical soil moisture 
conditions. 

Assumption 7. “Rainfall remains constant over the entire watershed during the time of 
concentration. The significance of this assumption is that because of the spatial variability of 
rainfall, the drainage area for which the rational method will apply is limited.” 

How spread out is the storm? Spatially distributed rainfall is less of an issue for small watersheds 
than large ones and less of an issue for frontal precipitation than for convective or orographic 
events. Isohyetal maps resolve Assumption 7, positively or negatively. While you may lack such a 
map, common observation usually indicates how broadly rain spreads over a region. 

Assumption 8. “Runoff occurs nearly uniformly from all parts of the watershed. This means that 
the runoff coefficient must be nearly the same over the entire drainage basin. This assumption is 
less likely to be valid as the drainage-basin size increases.” 

How uniform is the watershed? To resolve the adequacy of Assumption 8, walk the watershed, 
preferably when it’s raining. The issue isn’t that everything looks the same, but that whatever is 
distributed, say lawns and pavements, is distributed with reasonable consistency over the entire 
area. If you aren’t willing to walk, don’t use the Rational Method. 

 
BACK to TOC  


