

Panta Rhei – Everything Flows Change in Hydrology and Society IAHS Scientific Decade 2013-2022 www.iahs.info/pantarhei

Details of the Proposal

Title of the Working Group

Natural and man-made control systems in water resources

Abstract of the proposed research activity

Everything changes, this is of course true, but the long term behaviour of the physical world we live in seems remarkably predictable. For several sub-systems this is due to feedback mechanisms that support the current behaviour. To study future behaviour that differs materially from the current behaviour it will be necessary to look for hints in the historical behaviour of possible paths from one stable behaviour to another. It will also be necessary to examine the models in current use to see whether they are approximations valid only for the current behaviour. This leads to three important questions.

- 1) Do the current measurements of model input and output allow for identification of state, structure and parameters? If not then can this be remedied?
- 2) Do the current models have multiple stable behaviours (possibly for different parameter sets)?
- 3) Can strategies be developed to either keep the systems near desirable behaviour or to move system and society gracefully to a new stable behaviour.

It is well known that physical systems that make up our planet have multiple stable states. It is reasonable to assume that non-trivial hydrological models also have multiple stable states, see for example [1]. Even if they do not have multiple stable states then a search of the parameters space for a given set of model inputs and outputs may still yield different parameter sets corresponding to different stable states of the real world hydrological system. Given the multitude of feedback loops in natural systems control theory seems a natural fit to examine stability and parameter identification for hydrological systems and models.

Moreover, it is well known in control theory that the internal state and structure of a

model cannot always be reconstructed from its inputs and outputs.

These two points together suggest that a concerted effort of specialists in hydrological, atmosphere and ocean models and specialists in control theory aimed at a better understanding of stability and identifiability of hydrological systems would be worthwhile.

The same group would also be able to come up with new approaches to system management in a changing environment .

Panta Rhei Research Themes, Targets and Science Questions addressed by the Working Group

Science questions addressed:

(2) How do changes in hydrological systems interact with and feedback on natural and social systems driven by hydrological processes?

(6) How can we support societies to adapt to changing conditions by considering the uncertainties and feedbacks between natural and human-induced hydrologic changes?

Targets addressed:

- (1) Understanding
- (2) Estimation and prediction
- (3) Science in practice

Societal impact of the Working Group activity

A proper understanding of the limits on the capacity of a system to deal with disturbances and changes without materially altering its behavior and of ways to allow gradual movement from one behavior to another are essential to the continued existence of our current society.

List of Participants

Please include at least 6 members from 3 different countries. Make an effort to ensure interdisciplinarity. Add rows at the Table if necessary.

Name of Participant	Affiliation (full address and email)	Role	Main expertise
1 Ronald van Nooijen	Faculty of Civil Engineering and	Primary	Mathematical system
	Geosciences,	contact	analysis applied to water
	Delft University of Technology,		resource systems
	Stevinweg 1, 2628 CN Delft,		
	Netherlands		

	r.r.p.vannooyen(at)tudelft.nl		
2 Markus Hrachowitz	Faculty of Civil Engineering and	Member	Tracer hydrology and
	Geosciences,		conceptual hydrological
	Delft University of Technology,		modeling
	Stevinweg 1, 2628 CN Delft,		_
	Netherlands		
	M.Hrachowitz(at)tudelft.nl		
3 Alla Kolechkina	Faculty of Civil Engineering and	Member	Control theory and
	Geosciences.		optimization for
	Delft University of Technology.		management of water
	Stevinweg 1, 2628 CN Delft.		resource systems
	Netherlands		
	a.g.kolechkina(at)tudelft.nl		
4 Renata Romanowicz	Institute of Geophysics Polish	Member	Hydrology, environmental
	Academy of Sciences.		modelling, uncertainty
	ul. Ksiecia Janusza 64. 01-452		analysis, climate change
	Warszawa, Poland.		impact on hydrological
	Romanowicz(at)igf.edu.pl		processes
5 Jarosław	Institute of Geophysics Polish	Member	Hydrology, multi-
Napiórkowski	Academy of Sciences, ul. Ksiecia		objective optimisation.
. topici ne ne ne ne	Janusza 64, 01-452 Warszawa		environmental hydraulics
	Poland.		forecasting
	I Napiorkowski(at)igf edu pl		
6 Niels Schütze	Technische Universität Dresden	Member	Inverse modelling of
o melo bonatze	Bergstr 66	member	nhysically-based models
	01069 Dresden Germany		development and
	ns1(at)rcs urz tu-dresden de		application of soft-
			computing methods
7 Dirk Schwanenberg	Institute of Hydraulic Engineering	Member	Short-term forecasting
	and Water Resources	member	and optimization of water
	Management		resources systems
	Universität Duisburg-Essen		
	Universitiaetsstr 15		
	45141 Essen Germany		
	dirk schwanenberg(at)uni-due de		
8 Andrea Castelletti	Dent Electronics Information	Member	Applied systems
o marca castelletti	and Bioengineering	Wielinder	analysis Ontimal control
	Politecnico di Milano		and decision-making
	Piazza Leonardo da Vinci 32		
	20133 Milano, ITALY		
	andrea castelletti(at)nolimi it		
9 Demetris	Department of Water Resources	Member	Investigation of the
Koutsoviannis	and Environmental Engineering	member	nature and properties of
Koutsoyiumis	School of Civil Engineering of the		hydrological and
	National Technical University of		
	Athens		Peoplifying processes
	Heroon Polytechneiou 5		
	GR-157 80 Zogranhou Greece		
	dk(at)itia ntua gr		
10 Taba B M I	Masdar Institute	Member	Hydrometeorology
Quarda	Masdar City	Michibel	environmental and nublic
		L	

	Abu Dhabi,		health modeling, and risk
	United Arab Emirates,		analysis
	touarda(at)masdar.ac.ae		
11 Francesca Pianosi	Department of Civil Engineering,	Member	Water resource
	University of Bristol,		management
	Queen's Building,		
	University Walk,		
	Clifton BS8 1TR,		
	United Kingdom		
	francesca.pianosi(at)bristol.ac.uk		
12 Valeriy Khokhlov	Hydrometeorological Institute,	Member	Hydrometeorology,
	Odessa State Environmental		Climate Change impacts,
	University,		Multivariate time series
	Lvivska str. 15, 65016 Odessa,		analysis
	Ukraine		
	vkhokhlov(at)ukr.net		
13 Dmitry Kushnir	Department of Information	Member	Hydroclimatology,
	Technologies,		ecological modelling,
	Odessa State Environmental		spatial ecology
	University,		
	Lvivska str. 15, 65016 Odessa,		
	Ukraine		
	kushnir.dmitry23(at)gmail.com		

References

[1] Peterson, T. P., Argent, R. M. and Chiew, Francis H. S. (2007) Multiple stable hydrological states in models: Implications for water resource management. In Oxley, L. and Kulasiri, D. (eds) MODSIM 2007 International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand, December 2007, pp. 1457-1463. ISBN : 978-0-9758400-4-7.