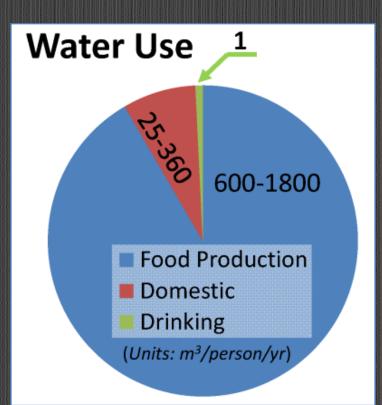
LINKING WATER RESOURCES TO FOOD SECURITY THROUGH VIRTUAL WATER

Stefania Tamea

"Water in Food" research group POLITECNICO DI TORINO – Italy stefania.tamea@polito.it

Virtua<u>l water</u>

Food security


VW trade

Way forward

SOCIETAL USE OF WATER

Water is used for two major purposes:

- Meeting hygienic, health and economic requirements
- > Producing food and other biomass

Freshwater used in 2010 for food production exceeded 10'000 km³ with an increase of 50% in 25 years (6'600 km³ in 1986) ... but NO awareness!

(Falkenmark, & Rockstrom 2004)

Water use	Virtual water	Food security	VW trade	Way forward		
OVERVI	EW					

• (Use of water)

- Introduction to virtual water
- Food security framework
- Virtual water trade
- Open questions and way forward

Water use	Virtual water	Food security	VW trade	Way forward
MII FST	NFS			

The **VIRTUAL WATER CONTENT** of a good is the amount of freshwater necessary for its production

(AKA embedded water or hidden water)

<u>THE IDEA</u> (J.A. Allan, 1993): "Middle Eastern states survive through large quantities of food imports, thus the region does not depend on its own scarce water resources but purchases water embedded in agricultural products."

<u>THE REALIZATION</u> (A.Y. Hoekstra, 2002): "Clean fresh water **is a scarce good with high economic value** and thus should be treated economically. There is an urgent need to develop appropriate concepts and tools to do so."

The **WATER FOOTPRINT** is a geographicallyexplicit indicator of the direct and indirect water use associated to the production/consumption of a good

Water use	Virtual water	Food security	VW trade	Way forward
EXAMP	LES –VW–			
	and the second	\bigcirc		
		0		
=		-	=	
70 litres	120 litres	140 litres	2000 litre	S

Very different from physical water content

- Not only food, but all agricultural products (textiles, biofuels)
- Animal products have large contents because of high forage volumes and low product fraction

On average, each person consumes (eating) 4000 litres per day of virtual water

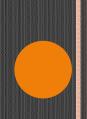
COMPONENTS OF THE WATER FOOTPRINT

• BLUE WATER: water from surface/groundwater

• GREY WATER: indicator of freshwater pollution

Water use	Virtual water	Food security	VW trade	Way forward

EXAMPLES –WF–

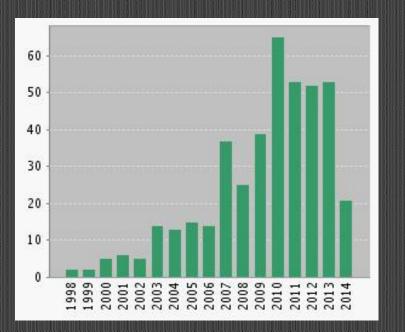

Product	Country	Green (m ³ /t)	Blue (m ³ /t)	Grey (m ³ /t)	TOTAL (m ³ /t)
Dico	Cina	549	246	215	1010
Rice	India	1394	452	224	2070
Wheat	USA	522	63	176	762
Wheat	Cina	791	74	295	1160
Sou	USA	1560	92	10	1662
Soy	Brasil	2181	1	15	2197

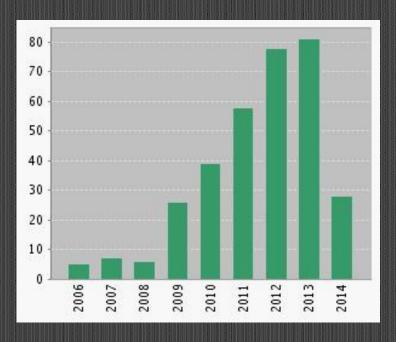
(data from Mekonnen and Hoekstra, 2010)

Factors influencing the water footprint:

- climatic conditions (ET rate, rainfall) Rice
- agricultural practices and technologies Soy
- sustainable use of water resources (irrigation, pollution) Wheat

VIRTUAL WATER and WATER FOOTPRINT allow to assess THE IMPACT of FOOD/GOODS on WATER RESOURCES


GROWING INTEREST


Models for *virtual water* quantification and *water footprint* assessments are growing across the scientific literature

Number of papers published (WoS) having keywords:

"Virtual Water"

Water use	Virtual water	Food security	VW trade	Way forward

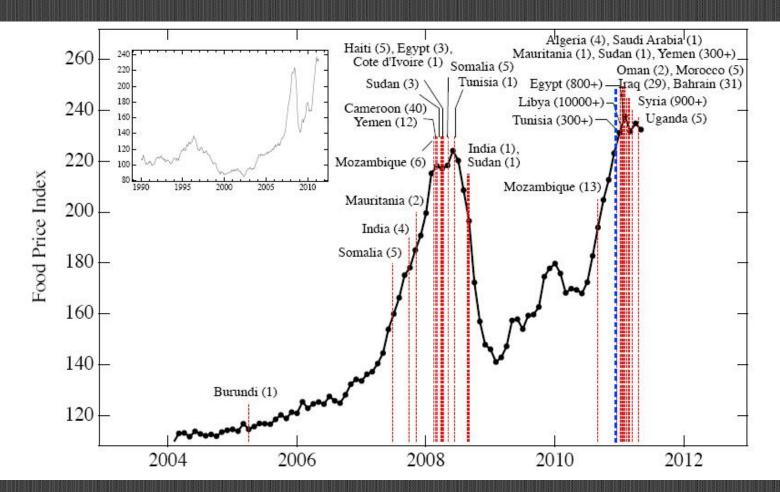
FOOD SECURITY

UN – FAO's definition (World Food Summit, 1996):

AVAILABILITY of sufficient quantities of food of appropriate quality.

ACCESS to adequate resources for acquiring food for a nutritious diet.

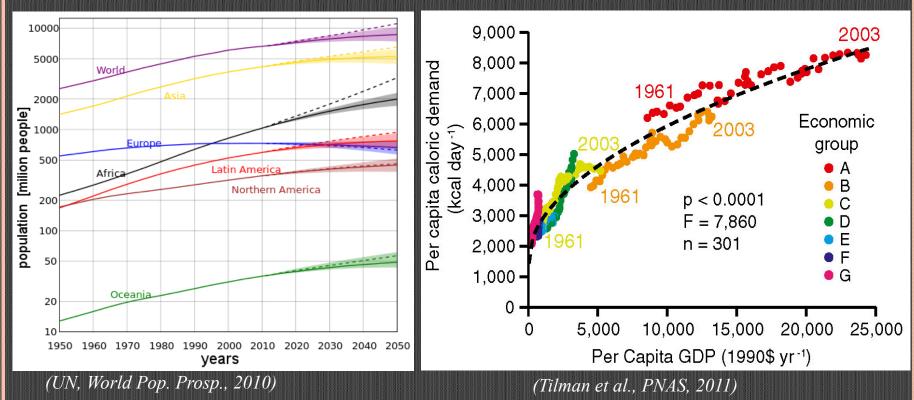
ADEQUACY of food use to meet all physiological needs (clean water, sanitation and healthcare)



VW trade

FOOD SECURITY (2)

When food availability and food access decrease...

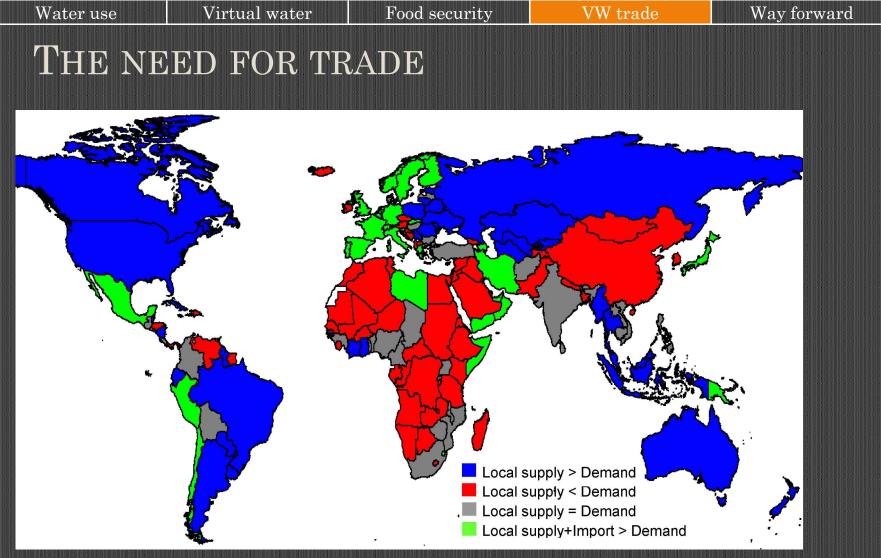

⁽Lagi et al., arXiv:1108.2455v1, 2011)

CHALLENGES

FOOD SECURITY +> FOOD AVAILABILITY +> FOOD DEMAND Current challenges of food demand are:

INCREASING POPULATIONRISING LIVING STANDARDS

CHANGING DIETS


FOOD PRODUCTION

Food demand has hystorically been met thanks to PRODUCTION BURSTS due to technological innovations, scientific breakthroughs and socio-economical changes (D'Odorico and Rulli, Nature Geoscience, 2013)

- INDUSTRIAL REVOLUTION: farming machinery and food processing improvement increased the production and distribution of food.
- GREEN REVOLUTION: use of fertilizers, high-yield cultivars and irrigation techniques enhanced the agricultural production.
 - **TRADE INTENSIFICATION**: global trade allowed coutries to rely on food imported from other countries and virtually use water resources available abroad.
- (NEW INVESTMENTS in agriculture)

Water use	Virtual water	Food security	VW trade	Way forward

VIRTUAL WATER TRADE

(elaboration with data from Mekonnen and Hoekstra, 2011)

TRADE IS **VITAL** FOR EUROPE AND MANY OTHER COUNTRIES !!


Water use	Virtual water	Food security	VW trade	Way forward
HINT OF	' METHODS			

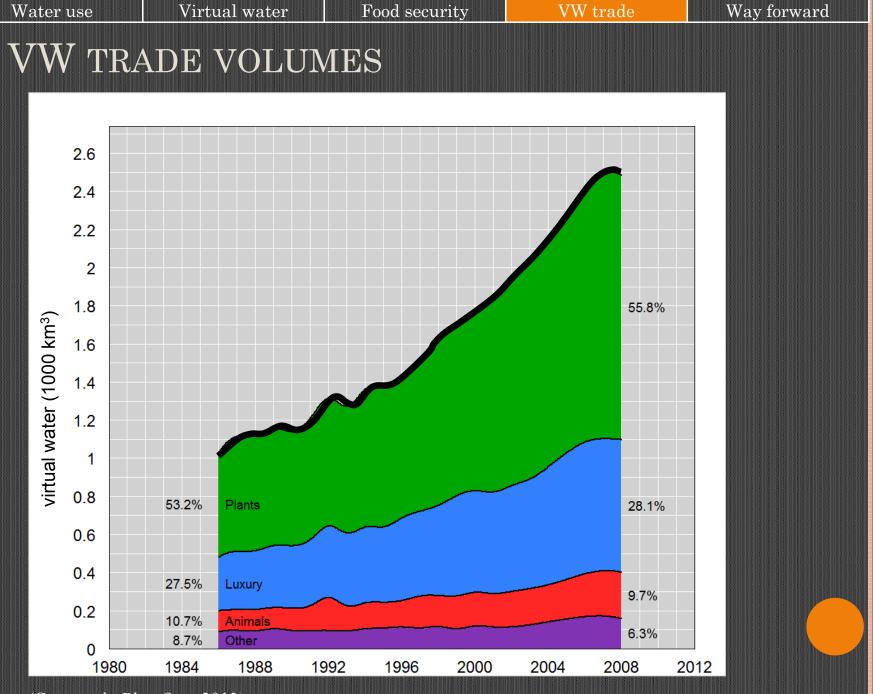
⇒ Databases of production, trade and food-balance by product and by country (e.g.. FAOSTAT, ComTrade)

⇒ Virtual water contents taken from *WaterFootprint.org* database or estimated via coupled "hydroagro" models (CropWat+ClimWat, H8, GCWM)

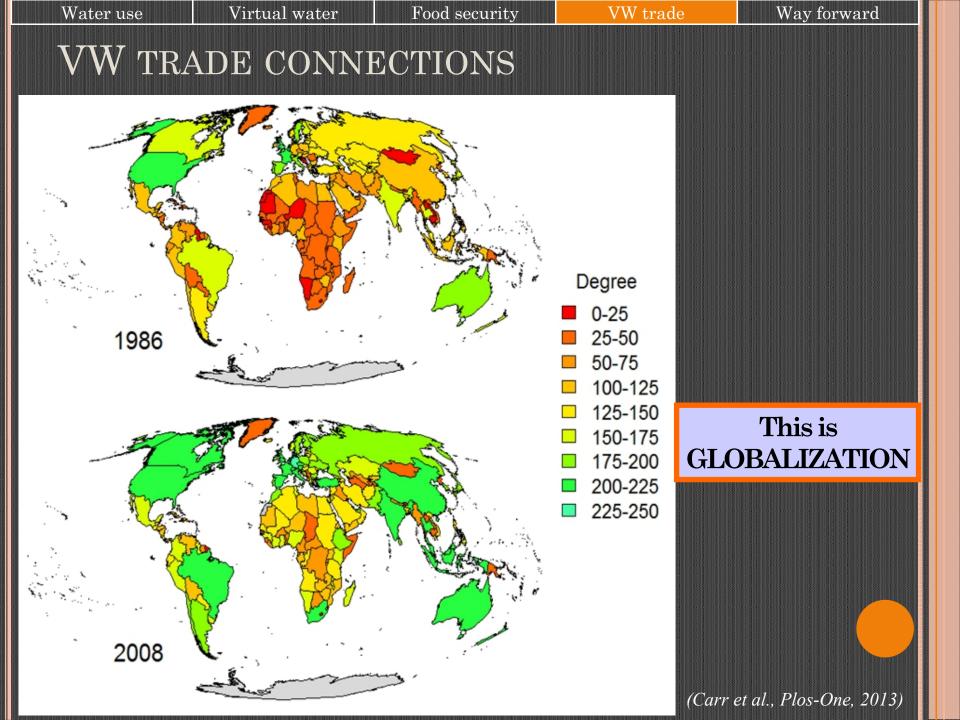
 \Rightarrow Virtual water volumes/fluxes obtained by multiplication, then

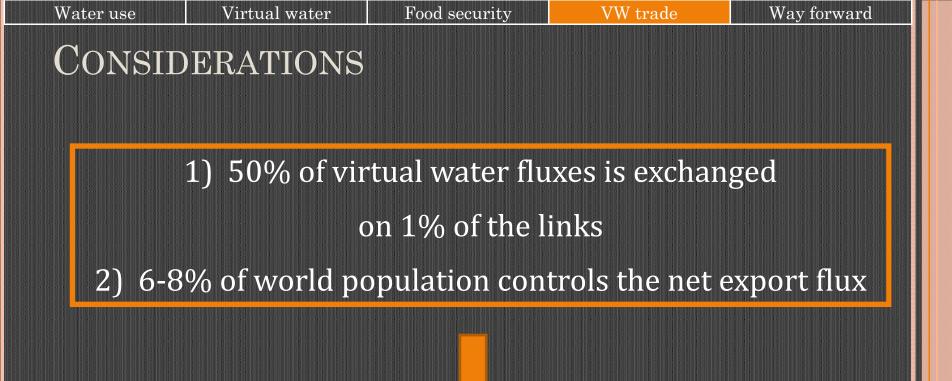
different summations

Appendix V.	Water footprint of	animal products (m ³ /ton). Period 1996-2005	

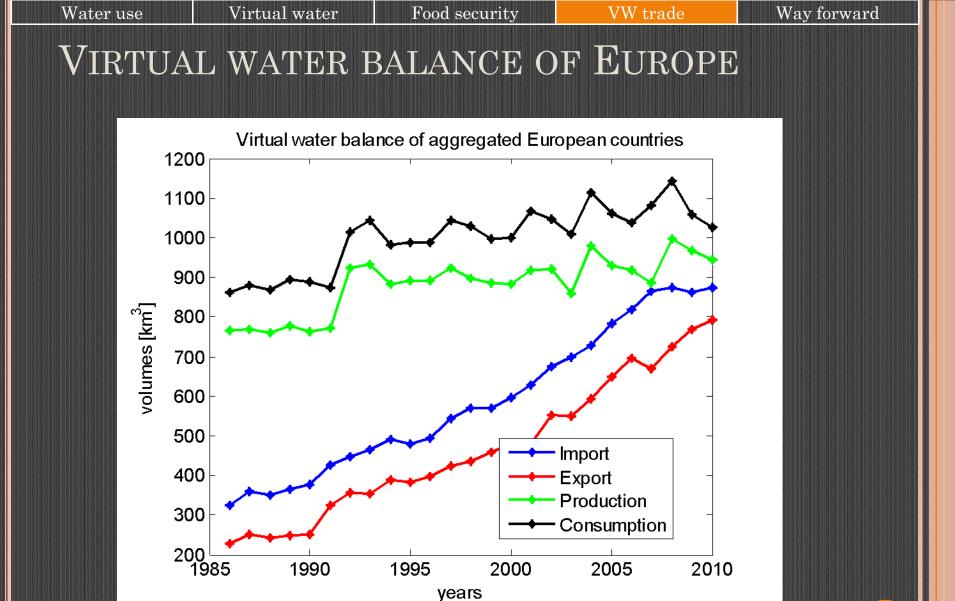

HS (PC-TAS) code	SITC Rev 3 (SITA) code	Product discription (HS)	Product description (SITC)	Rootproduct (HS)	Rootproduct (SITC)	Product fraction	Value fraction	Country		World A	Verage	
								Production system >>	Grazing	Mixed	Industrial	Weighted average
021019	01619	Swine meat cured, nes	Oth.pigmeat,dry,salt,smk	020311	01221	0.70	1.00	Green	7989	5433	4223	5117
								Blue	443	447	501	472
-					L			Grey	659	606		649
021020	01681	Bovine meat cured	Bov.meat,dried,smkd,salt	020110	01111	0.46	1.00	Green	32600	22848		
								Blue	724	791	1061	856
								Grey	375	620		
040110		Milk not concentrated and unsweetened not	Milk, fat cont. 1% or less	FA0882	FA0882	0.93	1.00	Green	1087	790		863
		exceeding 1% fat						Blue	56	90		
								Grey	49	76		72
040120	02212	Milk not concentrated & unsweetened	Milk, cream fat cont. 1-6%	FA0882	FA0882	0.90		Green	1123	816		891
		exceeding 1% not exceeding 6% fat						Blue	58	93		88
								Grey	50	79		
040130	02213	Milk and cream not concentrated and	Cream, fat content 6%+	FA0882	FA0882	0.50	1.00	Green	2021	1469		1605
		unsweetened exceeding 6% fat						Blue	104	168		
								Grey	91	142		
040210	02221	Milk powder not exceeding 1.5% fat	Milk,solid, to 1.5% fat	FA0882	FA0882	0.20	1.00	Green	5052	3671	4777	4011
								Blue	261	421	455	398
					1	1		Grey	227	354	382	336

Typical BOTTOM-UP approach (TOP-DOWN approaches are based on I/O matrices and on economical values)





Weighted and directed network 253 nodes (220 active) • 7000 links about 2000 km³ of total fluxes



⁽Carr et al., Plos-One, 2013)

- Few countries are net exporter and many countries import virtual water
- Network is structured with "hubs" and "rich clubs"
- Presence of inefficiencies (swaps)
- Socio-economical risks and ethical issues

(author's elaborations)

Import + Production = Export + Consumption

Water use	Virtual water	Food security	VW trade	Way forward

POSITIVE ASPECTS

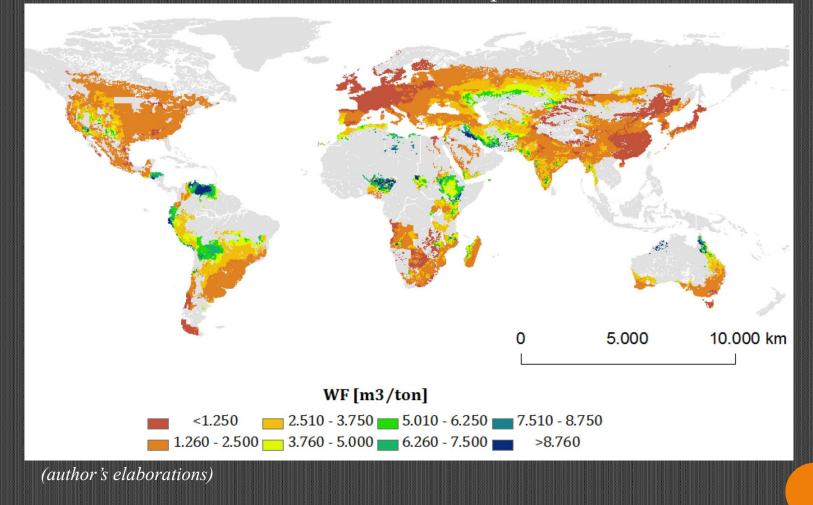
Meeting water demand through import
Water-scarce countries use water resources available abroad
Global water savings

NEGATIVE ASPECTS

Externalization of resources (dependency)
Decrease of societal resilience to drought
Vulnerability to water crises
Externaliz. of pollution without stewardship
Equity issues

Water use	Virtual water	Food security	VW trade	Way forward

OPEN QUESTIONS AND WAY FORWARD



 Water use
 Virtual water
 Food security
 VW trade

 DATA UNCERTAINTY AND VARIABILITY

Water footprint of wheat in the world

Way forward

Comparison between datasets and between different approaches (I/O) Sound assessment of blue water volumes

Food security

VW trade

Way forward

INVESTIGATING FUTURE SCENARIOS

• Evolution of trade network

- **Projection of drivers** (e.g., socioeconomic variables) of the virtual water trade
- Impact of climate change
- Definition of future water demand accounting for the challenges of:

INCREASING POPULATION
RISING LIVING STANDARDS
CHANGING DIETS

Water use	Virtual water	Food security	VW trade	Way forward
OTHER	OPEN QUE	STIONS		

- What is the *system vulnerability* to water crises?
- *Not all water is the same* (differentiating virtual water from water-scarse and water-rich countries)
- Relationship between *food prices and water footprint*
- *Also water comes to a price* (database building, analysis and integration)

CONCLUDING...

Virtual water provides a framework to quantify the link between food production and water resources

- There are several interests (scientific, economic, sociopolitical, policy implications, standards to set)
- There is a lot to do
- There are many actions that can be taken (research theme of Panta Rhei)
- There is a session here at EGU on Thursday afternoon...

HS5.6

Water and food security: integrating perspectives from geophysics and social sciences

Convener: Stefania Tamea 🍳 Co-Conveners: Marta Antonelli 🔍, Holger Hoff 🔍 🛯 <u>Convener Login</u>

<u>Orals</u> / Thu, 01 May, 13:30-17:00 / Room R8
 <u>Posters</u> / Attendance Thu, 01 May, 17:30-19:00 / Red Posters

THANKS FOR YOUR ATTENTION!

"Whatever you do will be insignificant, but it is very important that you do it." Mahatma Gandhi

> Stefania Tamea Politecnico di Torino stefania.tamea@polito.it

